NDU

Faculty of Natural and Applied Sciences Midterm Exam - Fall 2003

Department of Sciences

PHS 212 - Electricity & Magnetism

Duration: 2 hours

Solve all problems

1. Two charges q and -2q are located above a grounded infinite conducting plane, as shown in the figure. Find the potential V for the space above the plane, and the charge distribution on the surface of the plane.

- 2. An infinite cylinder of radius R carries a volume charge distribution $\rho = \rho_0 (1 \frac{r}{R})$, where ρ_0 is constant.
 - a. Find the electric field inside and outside of the cylinder.
 - b. Find the potential difference between the axis and the surface of the cylinder.
- 3. A spherical capacitor is made from a metallic sphere of radius 0.5 cm and a metallic shell of radius 0.53 cm. The charge on the capacitor is 0.2 μ C.
 - a. Find the potential difference between the plates of the capacitor.
 - b. Find the force per unit area f_s exerted on the on the surface of the sphere, and f_c exerted on the shell.
- 4. In a given region of space, the electric field in spherical coordinates is given by $\vec{E} = \left[2 a r \sin 2\theta \left(1 - \frac{cr}{2}\right) + b \cos \phi \left(1 - cr\right)\right] e^{-cr} \tilde{r} + \left(\frac{ar}{2} \cos 2\theta\right) e^{-cr} \tilde{\theta} - \left(\frac{b}{\sin \theta} \sin \phi\right) e^{-cr} \tilde{\phi}$

where a, b and c are constants.

- a. Show that this is a valid expression for an electric field
- b. Find an expression for the potential V.
- c. Find the charge density ρ in that region.

